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Recent work in our laboratory has focused on the de- 
velopment of new polymeric and molecular precursors to 
boron-based ceramic materials. For example, we have 
demonstrated that upon ammonia thermolysis, poly(vi- 
ny l~en taborane ) ,~~~  poly(~inylborazine),~,~ and dibromo- 
borane-dimethyl sulfide6 may each serve as efficient pre- 
cursors to boron nitride.' In an effort to develop new 
boron nitride precursors that give improved ceramic yields 
and/or do not require the use of ammonia during the 
ceramic conversion step, we have investigated the 
syntheses of new types of borazine-based polymers. We 
report herein the simple high-yield synthesis of a new 
soluble poly(borazy1ene) polymer that has proven to be an 
almost ideal chemical precursor to boron nitride. 

Small dehydrodimers and oligomers of alkylated bora- 
zine have previously been preparedg12 primarily by either 
metathesis or coupling reactions; however, owing to bo- 
razine's greater reactivity, these procedures are unsuitable 
for the generation of analogous species based on the parent 
B3N3H, compound. The N-B coupled dimer 1:2'- 
[B3N3H5I2 has been obtained in low yields from the de- 
composition of liquid borazine a t  room temperature over 
several months13 and from the gas-phase phot~lyt ic '~  or 
pyrolytic15 reactions of borazine. The latter two studies 
also reported the formation of insoluble solids that were 
proposed to have fused borazine polycyclic structures. 
Several studies13J6 of the stability of liquid borazine have 
also reported the formation of white low volatility (perhaps 
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polymeric) solids, but these materials were not identified. 
Thus, no tractable dehydrocoupled polymers derived from 
the parent borazine have previously been characterized. 

We have now found that simply heating liquid borazine 
in vacuo a t  moderate temperatures results in a dehydro- 
coupling reaction to produce soluble polymeric materials 
in excellent yields (eq 1). 

n 

R I H or Borazlnyl 

In a typical reaction, 3.15 g of borazine were heated in 
vacuo a t  70 "C in a one-piece 50-mL reaction flask. The 
reaction was continued with periodic degassing until the 
liquid became sufficiently viscous that stirring could not 
be continued (-48 h). The volatile contents of the flask 
were then vacuum evaporated, leaving a white solid (2.84 
g, 90% yield). This material was then completely dissolved 
in glyme and subsequently precipitated by addition of 
pentane to give a fine white powder (1.93 g, 61% yield). 
Elemental analyses of the crude and purified materials are 
consistent with empirical formulas of B2.7N3.0H3.0 and 
B3,1N3,0H2.7, respectively (poly(borazy1ene) = B3N3H4) 
suggesting the formation of a branched-chain or partially 
cross-linked s t r~c ture . '~  Molecular weight studies using 
size exclusion chromatography/low-angle laser light 
scattering (SEC/LALLS) indicate that the crude material 
(M, = 4000 f 540, M, = 1400 f 190, M,/M, = 2.86) and 
the reprecipitated sample (M, = 7600 f 460, M, = 3400 
f 210, M,/M, = 2.23) show broad molecular weight dis- 
tributions (MWD). Thus, on the basis of a linear chain 
model, D, (number-average degree of polymerization) for 
these materials ranges from 18 to 43 and D, (weight-av- 
erage degree of polymerization) from 51 to 97. Polymer- 
izations carried out for shorter times, for example, for 24 
h, showed correspondingly lower molecular weight averages 
(M, = 2100 f 330, M, = 980 f 150).lS 

Evidence of chain branching was also found in the 
LALLS chromatograms of both the crude and recrystal- 
lized polymers, where early-eluting high molecular weight 
components characteristic of highly branched or partially 
cross-linked chains were observed. In addition, the 
SEC/LALLS/UV studieslg showed that polymers in the 
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high molecular weight end of the MWD, including the high 
molecular weight component detected by the LALLS de- 
tector, had greater UV absorbance per unit mass than 
those in the lower molecular weight region of the MWD. 
This heterogeneity with respect to UV absorbance further 
supports a branched chain structure since the increased 
absorbance at the high molecular weight end of the MWD 
is consistent with the greater availability of branching sites. 

Although its detailed structure has not been established, 
the polymer is proposed to be composed primarily of linked 
borazine rings, analogous to those of the organic poly- 
(phenylene) polymers.20 Since small amounts of the N:B 
coupled dimer 1:2'-(B3N3H,), are isolated in the volatile 
materials from the reaction, the polymer is likely to contain 
N-B linkages between the borazines. Consistent with this 
interpretation, the llB NMR spectrum has a broad peak 
centered in the borazine region at  31 ppm.21 Also isolated 
in the volatiles were small amounts of borazanaphthalene; 
thus it is possible that the polymer also contains some 
degree of fused-ring structure. 

The polymer prepared in the manner described above 
is soluble in polar solvents such as THF or glyme and 
appears to be stable for extended periods when stored as 
a solid at  room temperature under vacuum. The polymer 
is sensitive to water and will decompose over several hours 
when exposed to moist air. 

A number of chemical precursorsz2 for the formation of 
boron nitride have now been reported;23 however, because 
of its composition, high-yield synthesis, and solubility, 
poly(borazy1ene) would appear to be an almost ideal pre- 
cursor system. Its ceramic conversion reactions were 
therefore investigated. Bulk pyrolyses of both the crude 
and recrystallized polymers were examined under either 
argon or ammonia to 1200 "C and were found to result in 
the formation of white boron nitride powders in excellent 
purities and ceramic yields (85-93% ; theoretical ceramic 
yield, 95%):24 

25-1200 "C 
[B3N3H,JX - 3BN + 2H2 

The materials produced a t  1200 "C exhibited diffuse 
reflectance 1R spectra consistent with those previously 
reported for boron nitridez5 and densities (1.7-1.9 g/mL) 
and X-ray powder diffraction patterns characteristic of 
turbostratic boron nitride.26 
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Thermogravimetric analysis of the ceramic conversion 
reaction showed that the polymer follows a well-defined 
decomposition path in which an initial (2%) weight loss 
(probably resulting from polymer cross-linking) occurs in 
a narrow range between 125 and 300 "C, followed by a 
gradual 4% loss ending by 1100 "C. Thus, poly(borazy1- 
ene) appears to be an excellent precursor to boron nitride, 
which, because of its solubility, low-temperature decom- 
position, and high ceramic and chemical yields, makes it 
an excellent candidate for the generation of, for example, 
coatings or fibers of boron nitride. We are presently ex- 
ploring these possibilities.27 
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The development of polymeric nonlinear optical (NLO) 
materials is currently an area of intense investigation.' 
Polymeric systems that show second harmonic generation 
(SHG) have conjugated aromatic molecules with elec- 
tron-donor and -acceptor moieties in a noncentrosymmetric 
array. These nonlinear optical molecules can be doped into 
a glassy polymer matrix2 or can be covalently attached to 
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